Geekflare is supported by our audience. We may earn affiliate commissions from buying links on this site.
In Data Management Last updated: January 2, 2023
Share on:
Invicti Web Application Security Scanner – the only solution that delivers automatic verification of vulnerabilities with Proof-Based Scanning™.

Data Mesh is a data architecture that aims to create a shared, central authority for data across an organization.

It seeks to create a culture and governance around data that enables self-service, autonomous teams and empowers them to collaborate and innovate using data. Let’s understand what Data Mesh is all about.

What is Data Mesh?

In simple words, Data Mesh is a decentralized architecture for managing data within an organization, which means that it is designed to give control and ownership of data to the teams that use it rather than centralizing it in a single group or department.

YouTube video

It emphasizes the importance of data as a key asset. It is designed to help organizations achieve better data governance, data quality, and data integration while also fostering a culture of data-driven decision-making.

Data Mesh Architecture

A Data Mesh architecture typically includes three main components: data sources, infrastructure, and domain-oriented data pipelines managed by functional owners.

Data Mesh Architecture
Image Credit: Microsoft
  1. Data sources: These are the various sources of data that are used within the organization, such as databases, APIs, and sensors.
  2. Data infrastructure: This is the underlying infrastructure that is used to store, process, and manage data within the organization. It may include data lakes, data warehouses, and other data storage and processing systems.
  3. Domain-oriented data pipelines: These are the pipelines that are used to move data from the data sources to the data infrastructure and to make it available for use by the functional teams that need it. These pipelines are managed by the functional owners, who are responsible for ensuring that the data is of high quality and meets the needs of the business.

These three components are interconnected and integrated rather than being isolated silos of data. In a Data Mesh architecture, teams are responsible for the data they use, including its quality, access, and security.

This decentralized approach helps to ensure that data is used effectively and that teams have the necessary information to make informed decisions. It also promotes a culture of data-driven decision-making by making data more accessible, transparent, and trustworthy.

Steps needed to design a data mesh architecture

To implement data mesh within an organization, the following steps can be followed:

#1. Identify business domains

The first step in implementing data mesh is to identify the business domains within the organization. These are the areas of the business that are responsible for delivering value to customers. Each business domain should have a clear owner who is responsible for the data that is used within that domain.

#2. Establish data governance

A clear data governance framework should be established to ensure data is used responsibly and ethically. This includes establishing roles and responsibilities for data management, setting standards for data quality and accuracy, and defining processes for data access and usage.

#3. Define data ownership

Each business domain should be responsible for the data it uses, including its quality and accuracy. This means that the business domain should be involved in the creation and maintenance of the data, as well as its use and dissemination.

#4. Promote data literacy

To enable employees to make informed decisions based on data, it is important to promote data literacy within the organization. This can be done through training and education programs, as well as by providing access to tools and resources that enable employees to work with data.

#5. Democratize data access

Data mesh promotes the democratization of data, meaning that data should be made accessible to all employees. This can be done by providing tools and resources that enable employees to access and use data from across the organization.

#6. Implement data operations

To ensure that data is properly managed and maintained, it is important to put in place processes and practices for data operations. This includes tasks such as data ingestion, data transformation, and data storage and retrieval.

Principles of Data Mesh

Data mesh is implemented through a set of principles and practices that aim to create a culture of data-driven decision-making and enables employees to more easily access and use data from across the organization.

These four principles include:

datamesh
Image Credit: altexsoft

#1. Domain-oriented decentralized data ownership and architecture

This principle emphasizes the importance of organizing data around business domains, with each business unit responsible for the data it uses and the quality of that data. This helps to ensure that data is aligned with the needs of the business and its customers and enables business units to more easily access and use data from other parts of the organization.

#2. Data as a product

This principle treats data as a valuable asset that should be managed and governed like a product. This includes defining data products, establishing data product teams, and creating a data product roadmap.

#3. Self-serve data infrastructure as a platform

It encourages the creation of a self-service model for data, where business units have more control over the data they use and can more easily access and use data from other parts of the organization.

#4. Federated computational governance

This principle establishes a framework for data governance that takes into account the needs and goals of multiple stakeholders, including business units, IT, and data scientists. This approach helps to ensure that data is used responsibly and ethically and promotes data literacy and data-driven decision-making within the organization.

Importance of Data Mesh

Importance-of-Data-Mesh

There are several reasons why an organization might consider adopting data mesh:

Improved data quality and accuracy

By organizing data around business domains and establishing clear ownership and governance, data mesh can help to improve the quality and accuracy of data within an organization. This can help to ensure that data is aligned with the needs of the business and its customers and can support more informed decision-making.

Enhanced data accessibility and usability

Data mesh promotes the democratization of data, meaning that data should be made accessible to all employees. This can be done by providing tools and resources that enable employees to access and use data from across the organization. By enabling employees to more easily access and use data, data mesh can help to improve data literacy and data-driven decision-making within the organization.

Greater control over data

With data mesh, business units are given more control over the data they use and the quality of that data. This can help to ensure that data is aligned with the needs of the business and can be more easily accessed and used by the people who need it.

Better data governance

Data mesh promotes the establishment of clear data governance frameworks that help to ensure that data is used responsibly and ethically. This includes establishing roles and responsibilities for data management, setting standards for data quality and accuracy, and defining processes for data access and usage.

Overall, adopting data mesh can help organizations to leverage their data assets more and promote a culture of data-driven decision-making.

Data Mesh vs. Data Lake

Data mesh and data lake have several differences in terms of their focus, organization of data, emphasis on data governance and literacy, and approach to data access and usage.

Here is a comparison of data mesh and data lake in a tabular form:

Data MeshData Lake
Focuses on the needs of the business and its customersFocuses on technical aspects of data storage and processing
Organizes data around business domainsOrganizes data in a hierarchical file structure
Data is owned and governed by business unitsData may be accessed by multiple departments or teams
Emphasizes data governance and data literacyIt does not necessarily focus on data governance or data literacy
Enables a culture of data-driven decision makingProvides a centralized repository for storing and processing data
Encourages self-service data accessIt may require IT intervention to access and use data
Promotes data democratizationMay have limited data access due to security or privacy concerns
Follows principles of domain-driven designDoesn’t follow a specific design framework
Involves data operations processes and practicesMay not have specific processes for data operations
It may require more upfront planning and designIt can be more flexible and allow for ad-hoc data storage and processing

A data lake is a central repository that allows you to store all your structured and unstructured data at any scale. It is a place to store data in its raw and granular form before any processing or transformation has taken place. This allows organizations to store and analyze data more flexibly and cost-effectively than traditional data warehouses.

Whereas the data mesh is designed to empower teams to own and manage their own data rather than relying on a centralized group to manage data for them.

Data Mesh Learning Resources

There are many resources available online for learning about data mesh, and it can be overwhelming to try to find the most helpful ones. Learning data mesh in the right way is important to ensure that you have a solid understanding of the concepts and can effectively apply them in your work.

These resources can provide a foundation for understanding the principles and practices of data mesh and can help you build the skills you need to manage and analyze data in a data mesh environment effectively.

#1. Data Mesh – A Modern Decentralized Data Management Concept

In this Udemy course, The trainer covers the fundamentals of data mesh architecture for effective data management. And also provides various case studies on data mesh implementation.

datamesh1

It is possible to complete this course on Udemy within a week, depending on your schedule and the amount of time you are able to devote to the course. However, it’s important to keep in mind that the course is designed to provide a comprehensive overview of data mesh and, as such, may require more time to understand and absorb the material fully.

#2. Data Mesh: The Complete Masterclass

For individuals seeking to advance their professions, this data mesh course is excellent. This course covers each topic related to designing a data mesh and data product architecture,

datamesh2

By the end of this course, you will be able to implement the data mesh concept in real-world enterprises. No prior knowledge required about data mesh is required to start with this course,

#3. Data Mesh: Delivering Data-Driven Value at Scale

This book introduces the concept of data mesh and provides a clear overview of how to design a data mesh architecture and a guide for data mesh strategy & execution.

Many reviewers have found the book to be a helpful and practical guide for understanding the principles and patterns of data mesh and for implementing it in organizations.

Conclusion

Data mesh is a design pattern and cultural framework for building a data-driven organization. It is based on the idea of creating a “single source of truth” for data within an organization and promoting the concept of data as a product.

This is achieved through the use of decentralized data governance, in which cross-functional teams are responsible for the quality, availability, and maintenance of data within their domain.

Data mesh also emphasizes the importance of establishing a clear understanding of the data contracts between different teams and encourages the use of data discovery tools and platforms to facilitate the sharing of data within the organization.

I hope you found this article helpful in learning about data mesh and its principles. You may also be interested in learning about data virtualization.

  • Ashlin Jenifa
    Author
    Hey there, my name is Ashlin, and I’m a senior technical writer. I’ve been in the game for a while now, and I specialize in writing about all sorts of cool technology topics like Linux, Networking, Security, Dev Tools, Data Analytics, and Cloud… read more
Thanks to our Sponsors
More great readings on Data Management
Power Your Business
Some of the tools and services to help your business grow.
  • Invicti uses the Proof-Based Scanning™ to automatically verify the identified vulnerabilities and generate actionable results within just hours.
    Try Invicti
  • Web scraping, residential proxy, proxy manager, web unlocker, search engine crawler, and all you need to collect web data.
    Try Brightdata
  • Monday.com is an all-in-one work OS to help you manage projects, tasks, work, sales, CRM, operations, workflows, and more.
    Try Monday
  • Intruder is an online vulnerability scanner that finds cyber security weaknesses in your infrastructure, to avoid costly data breaches.
    Try Intruder